Skip to main content

Climate Change Thematic Assessment

Executive Summary

The Climate Change Thematic Assessment summarises the information on climate change and ocean acidification in the OSPAR Maritime Area. The ocean is critical in regulating the Earth’s climate: it has absorbed 89% of the excess heat trapped inside the atmosphere since the 1970s, and every year absorbs at least a quarter of the carbon dioxide (CO2) released by human activities.

Their ability to absorb heat and CO2 means that marine ecosystems, and the human activities within them, are particularly vulnerable to climate change. Rising sea level and temperatures, reduced pH values, changes in rainfall amounts and reduced sea ice coverage, among others, are all effects of the rising atmospheric greenhouse gas concentrations. These pressures have resulted in documented changes to marine ecosystems, for example in the distribution of species and the timing of key life stage events. Local and regional impacts can vary, and some regions are experiencing changes at a much faster rate (for example, in the Arctic Waters (Region I)). Climate extremes, such as marine heatwaves, storms and waves are also becoming more prevalent.

Increased atmospheric greenhouse gas concentrations and the related impacts on the marine environment are influenced by almost all socio-economic drivers and by a wide-ranging number of associated human activities, both on land and at sea.

Human activities in the marine environment and marine ecosystems will need to adapt to both the observed and anticipated changes. In addition, the coastal and marine environment offer opportunities for reducing anthropogenic greenhouse gas emissions, (e.g. through the production of offshore wind and wave energy), for protecting and restoring natural greenhouse gas sinks (such as blue carbon and sedimentary carbon) and for establishing anthropogenic carbon storage, often referred to as carbon capture and storage (CCS). These opportunities need to be fully explored and maximised to support climate action.

Q1. Identify the problems? Are they the same in all OSPAR regions?

Since the industrial revolution, greenhouse gases emitted by human activities have caused the Earth’s climate (the long-term average prevailing conditions) to change. These greenhouse gases have originated from the combustion of fossil fuels (such as coal, oil and gas) and from changes in agriculture, forestry and other land use. Greenhouse gases are effective at trapping the heat inside the Earth’s atmosphere, like layers of blankets to keep your body warm on a cold night. This additional energy in the Earth system has led to global warming, with impacts for terrestrial environments and the ocean. The majority of this heat has been absorbed by the ocean, highlighting the importance of the ocean in regulating the Earth’s climate.

In the ocean, climate change has led to warming, decreased oxygen concentrations, marine heatwaves and sea-level rise, with many further related impacts across marine ecosystems and the services they provide. Moreover, the excess CO2 released into the atmosphere by human activities is being drawn down into the ocean, leading to acidification (see: Climate Change and Ocean Acidifcation - An Explainer.pdf ). Climate change is also triggering widespread change in the water cycle by changing the prevailing atmospheric conditions and causing changes to other parameters such as stratification and ocean circulation. Climate extremes, such as storms and waves are becoming more prevalent.

Kongsfjord glacier Norway. © Tony Morris

Kongsfjord glacier Norway. © Tony Morris

These changes in the physical and chemical conditions of the marine environment are affecting marine habitats and ecosystems across the OSPAR Maritime Area, although there are regional and local variations in these pressures. The root cause is global, but the effects, such as storms and floods or changes in rainfall, are felt at more local scales. There are also regional variations in the rate of change, for example the higher rates of sea temperature warming in Arctic Waters.

These localised effects can trigger changes in other regions. Some studies have suggested that losses of Arctic sea-ice may affect the position and strength of strong winds such as the polar vortex and the jet stream, which may then cause extreme weather at mid-latitudes.

Not all pressures are changing at the same rate across the OSPAR Maritime Area, and some regions are experiencing changes at a much faster rate (Arctic Waters). Changes in sea-level rise and in the frequency and intensity of the strongest storms may impact lower lying areas in OSPAR countries more significantly. The eventual climate risk, a combination of vulnerability and exposure, emerges on a much more local scale, requiring a national response.

Because of the connectivity between land and sea, land-based impacts may also lead to pressures on the coastal and marine environment, for example from intense rainfall events.

Changes in the physical and chemical conditions of the marine environment are affecting marine habitats and ecosystems across the OSPAR Maritime Area, floods are felt at local scales pictured here in Germany. © Shutterstock

Changes in the physical and chemical conditions of the marine environment are affecting marine habitats and ecosystems across the OSPAR Maritime Area, floods are felt at local scales pictured here in Germany. © Shutterstock

Q2. What has been done?

The topics of marine climate change and ocean acidification (OA) have increasingly gained prominence within OSPAR’s work. At the same time, the interconnection between ocean and climate has also received greater recognition on the global policy scene, for example at the UN Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COP) in Madrid in 2019, and more recently in the COP26 Glasgow Climate Pact, in which the parties agree to integrate and strengthen ocean action across the UNFCCC and to establish an annual ocean dialogue, providing an opportunity to permanently embed the ocean into climate change responses.

The OSPAR Convention already provides some measures intended to help Contracting Parties reduce atmospheric greenhouse gas concentrations (mitigation), live with the consequences of climate change (adaptation), or increase the resilience of their natural and socio-economic systems to climate change impacts. These include OSPAR Decisions 2007/1 and 2007/2, both relating to the storage of CO2 streams. The OSPAR network of Marine Protected Areas (MPAs) may also be regarded as supporting increased ecosystem resilience. However, OSPAR still needs to adopt further specific measures in order to tackle climate change and ocean acidification.

The Quality Status Report 2010 identified climate change impacts as an increasing pressure on marine ecosystems. It also found that the pressures from human activities would alter as societies mitigated against and adapted to climate change. The assessment recommended that OSPAR Contracting Parties should cooperate in reducing existing pressures, managing sea-based renewable energy and carbon capture and storage developments, and, inter alia, in monitoring and assessing ocean acidification and climate change.

The QSR 2010 noted the key vulnerability of the Arctic region and its marine ecosystems to climate change and ocean acidification. The focus that OSPAR places on the protection of Arctic waters has resonance beyond the region itself. For example, the Arctic Monitoring and Assessment Programme (AMAP) reported in 2017 that the Arctic “also plays an important role in global climate and weather, sea level rise and world commerce, which means that impacts in the Arctic resonate far south of the Arctic Circle”.

This assessment informed OSPAR’s commitments on climate change and ocean acidification under the North-East Atlantic Environmental Strategy for 2020 (NEAES 2020). These included the monitoring and assessment of the effects of climate change and ocean acidification, incorporating the impacts of, and responses to, climate change and ocean acidification in integrated management, and improving knowledge on the interactions between climate change and eutrophication.

OSPAR’s Intermediate Assessment 2017 (IA 2017) made further progress on assessing marine climate and climate change (including ocean acidification) in the OSPAR Maritime Area, while recognising that more progress needed to be made. The IA 2017 also recommended placing prevailing ocean conditions within the cumulative effects framework (which has been further advanced by the application of the DAPSIR framework in QSR 2023).

Ocean acidification received little consideration under QSR 2010 but has gained increasing prominence since then. OA monitoring became a voluntary parameter reported under OSPAR’s Coordinated Environmental Monitoring Programme (CEMP) following the work done by the Joint Study Group on Ocean Acidification (SGOA, 2012-2014) and the report it delivered (ICES, 2014). Subsequently, an intersessional correspondence group (ICG) on OA was established and first met in 2019. This group was tasked with the delivery of an ocean acidification assessment for QSR 2023.

As set out in NEAES 2020, OSPAR has focused on managing many of the human pressures that affect the marine environment, although there has been increasing recognition of the importance of climate change and ocean acidification in understanding changes in marine biodiversity and ecosystem functioning. In accordance with this strategy, OSPAR has committed to monitor and assess the nature, rate and extent of the effects of climate change and ocean acidification on the marine environment and to consider appropriate ways to mitigate and adapt to these impacts. Strengthening the OSPAR network of MPAs was also emphasised as part of the strategic direction under NEAES 2020. However, more work will be needed before the resulting increase in the resilience of the marine ecosystem to climate change can be quantified.

Q3. Did it work? Developments since QSR2010 and NEAES 2020

OSPAR has recognised the need to emphasise climate change and ocean acidification more strongly in its work. Although these topics gained prominence in NEAES 2020, the evaluation of this strategy (OSPAR, 2021) reveals that progress on climate change and ocean acidification has been limited. A regional, coordinated monitoring and assessment programme for climate change and ocean acidification has not been achieved to the same degree as for the marine biodiversity and ecosystem function. Good progress has been made towards the monitoring and assessment of ocean acidification, through the establishment of the ICG-OA in 2018 and the group’s subsequent work.

Climate change signals are apparent in several of the assessments completed in the framework of the QSR 2023, but a more developed understanding of the fundamental links between ecosystem responses, climate and other anthropogenic drivers is required.

The NEAES 2020 had ambitions to monitor and assess the current and future impacts of climate change and ocean acidification on species, habitats and ecosystem functioning, determine the timescale(s) for such impacts to take effect and their possible extent, and to consider management options suitable for mitigating and adapting to such impacts. While this has not been achieved, OSPAR’s North-East Atlantic Environment Strategy (NEAES) 2030 has confirmed the continued intention to support progress towards these goals in the forthcoming assessment cycle, with three of its 12 strategic objectives focused specifically on climate change and ocean acidification.

Q4. How does this field affect the overall quality status?

It is clear that changes in the prevailing physico-chemical conditions of the marine environment in the OSPAR Maritime Area have been caused by climate change and ocean acidification. Thematic assessments produced for QSR 2023 indicate that climate change and ocean acidification are already having an effect on the marine ecosystem and all human activities in the OSPAR Maritime Area. However, there remains the difficulty of quantifying these impacts and fully integrating them in order to determine the resulting change in overall quality status. This mainly stems from the difficulty in distinguishing with confidence the impacts of climate change and ocean acidification from the impacts of other processes that are either primary or managed drivers. Such strong causal links and identified mechanisms are currently lacking, but future developments may bring improvement in directly attributing changes in the quality status of marine ecosystem and human activities to climate change. To address this, OSPAR should further explore how indicators change in response to changes in the climate pressures identified in this thematic assessment.

Q5. What do we do next?

Addressing climate change will require action at all levels of society. This action needs to focus on three aspects: (i) preparing for and adapting to the hazards exacerbated by climate change, (ii) building up resilience across the system by managing pressures, and (iii) reducing greenhouse gas emissions and increasing their uptake and storage. Although many of the levers for achieving this lie outside of the OSPAR mandate, we will contribute to international progress towards a climate-ready and low-carbon society, under the North-East Atlantic Environment Strategy (NEAES) 2030. As part of this work, OSPAR should proactively adopt specific measures to address climate change and ocean acidification.

Resilience to the impacts of climate change and ocean acidification is one of the four themes encompassed by NEAES 2030. This theme has three strategic objectives:

  • OSPAR will raise awareness of climate change and ocean acidification by monitoring, analysing and communicating their effects (Strategic Objective 10);
  • OSPAR will facilitate adaptation to the impacts of climate change and ocean acidification by considering additional pressures when developing programmes, actions and measures (Strategic Objective 11); and
  • OSPAR will mitigate climate change and ocean acidification by contributing to global efforts, including by safeguarding the marine environment’s role as a natural carbon store (Strategic Objective 12).

The Climate Change Expert Group, established to deliver the Climate Change thematic assessment for QSR 2023, will propose that OSPAR consider establishing a permanent working group on climate change to address these objectives. This group’s work would include regular assessments of current and projected impacts and support the work of other Committees in integrating climate change into their assessments and policy work. To progress the work of attributing changes in the overall quality status of marine ecosystem and human activities to climate change, OSPAR should explore further how indicators reflect changes in climate pressures. In future assessments, OSPAR might also consider the assessment of physico-chemical pressures within a more formal framework; these could then be included in the Joint Assessment & Monitoring Programme (JAMP).

The work programme on climate change and ocean acidification would also inform the future implementation of nature-based solutions for different habitat types in the OSPAR Maritime Area. The multiple benefits of these nature-based solutions include carbon uptake and storage through natural processes, the reversal of biodiversity loss, and improved ecosystem resilience.

Strengthened collaboration between the OSPAR experts on ocean acidification and climate change will be central to addressing these strategic objectives and progressing the necessary underlying tasks.

Abrantes, F., Rodrigues, T., Montanari, B., Santos, C., Witt, L., Lopes, C., & Voelker, A. H. L. (2011). Climate of the last millennium at the southern pole of the North Atlantic Oscillation: an inner-shelf sediment record of flooding and upwelling. Climate Research, 48, 261-280.

Alvarez, I., Gomez‐Gesteira, M., Decastro, M., & Dias, J. M. (2008). Spatiotemporal evolution of upwelling regime along the western coast of the Iberian Peninsula. Journal of Geophysical Research: Oceans, 113(C7).

Alvarez, I., Lorenzo, M. N., & DeCastro, M. (2012). Analysis of chlorophyll a concentration along the Galician coast: seasonal variability and trends. ICES Journal of Marine Science, 69(5), 728-738.

AMAP, 2017. Snow, Water, Ice and Permafrost. Summary for Policy-makers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. 20 pp. Available at: https://www.amap.no/documents/doc/snow-water-ice-and-permafrost.-summary-for-policy-makers/1532

AMAP, 2021a. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. 16 pp. Available at: https://www.amap.no/documents/download/6759/inline

AMAP, 2021b. AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway. viii+148 pp. Available at: https://www.amap.no/documents/download/6836/inline.

Arheimer, B., Dahné, J., & Donnelly, C. (2012). Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan. Ambio, 41, 600-612.

Asbjørnsen, H., Årthun, M., Skagseth, Ø., Eldevik, T., 2020. Mechanisms Underlying Recent Arctic Atlantification. Geophysical Research Letters 47, e2020GL088036. Available at: https://doi.org/10.1029/2020GL088036

Bahri, T., Vasconcellos, M., Welch, D.J., Johnson, J., Perry, R.I., Ma, X. & Sharma, R., (eds.), 2021. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper No. 667. Rome, FAO. Available at: https://doi.org/10.4060/cb3095en

Baird, D., Asmus, H., Asmus, R., Horn, S., De la Vega, C., 2019. Ecosystem response to increasing ambient water temperatures due to climate warming in the Sylt-Romo Bight, northern Wadden Sea, Germany. Estuarine, Coastal and Shelf Science 228, 106322

Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F., eds. 2018. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. Rome, FAO. 628 pp.

Barton, E. D., Field, D. B., & Roy, C. (2013). Canary current upwelling: more or less?. Progress in Oceanography, 116, 167-178.

Bartosova, Alena, René Capell, Jørgen E. Olesen, Mohamed Jabloun, Jens Christian Refsgaard, Chantal Donnelly, Kari Hyytiäinen, Sampo Pihlainen, Marianne Zandersen, and Berit Arheimer. "Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea." Ambio 48 (2019): 1325-1336.

Baudron, A.R., Brunel, T., Blanchet, M.A., Hidalgo, M., Chust, G., Brown, E.J., Kleisner, K.M., Millar, C., MacKenzie, B.R., Nikolioudakis, N. and Fernandes, J.A., 2020. Changing fish distributions challenge the effective management of European fisheries. Ecography, 43(4), pp.494-505. Available at: https://doi.org/10.1111/ecog.04864 

Beaugrand, G. (2003). Long‐term changes in copepod abundance and diversity in the north‐east Atlantic in relation to fluctuations in the hydroclimatic environment. Fisheries Oceanography, 12(4‐5), 270-283.

Beaugrand, G., McQuatters-Gollop, A., Edwards, M., & Goberville, E. (2013). Long-term responses of North Atlantic calcifying plankton to climate change. Nature Climate Change, 3(3), 263-267.

Benazzouz, A., Demarcq, H., & González-Nuevo, G. (2015). Recent changes and trends of the upwelling intensity in the Canary Current Large Marine Ecosystem.

Berner, E.K. and Berner, R.A., 2012. Global environment: water, air, and geochemical cycles. Princeton University Press.

Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L. and Widmann, M., 2019, 'Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change', Science Advances 5(9, eaaw5531). Available at: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aaw5531. Accessed on 4 December, 2019.

Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O’Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  447–587. Available at: https://doi.org/10.1017/9781009157964.007

Birchenough, S.N., Reiss, H., Degraer, S., Mieszkowska, N., Borja, Á., Buhl‐Mortensen, L., Braeckman, U., Craeymeersch, J., De Mesel, I., Kerckhof, F. and Kröncke, I., 2015. Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. Wiley interdisciplinary reviews: climate change, 6(2), pp.203-223.

Bluemel, J. K., Fischer, S. H., Kulka, D. W., Lynam, C. P., & Ellis, J. R. (2022). Decline in Atlantic wolffish Anarhichas lupus in the North Sea: Impacts of fishing pressure and climate change. Journal of Fish Biology, 100(1), 253-267.

Bode, A., Anadón, R., Morán, X. A. G., Nogueira, E., Teira, E., & Varela, M. (2011). Decadal variability in chlorophyll and primary production off NW Spain. Climate Research, 48(2-3), 293-305.

Brander, K.M., Ottersen, G., Bakker, J. P., Beaugrand, G., Herr, H., Garthe, S., Gilles, A., Kenny, A., Siebert, U., Skjoldal, H. R., Tulp, I. (2016). Environmental Impacts—Marine Ecosystems. In: Quante, M., Colijn, F. (eds) North Sea Region Climate Change Assessment. Regional Climate Studies. Springer, Cham. Available at: https://doi.org/10.1007/978-3-319-39745-0_8

BSH 2021 The ice winter 2020/2021 at the German coasts and the Baltic Sea. Available at: https://www.bsis-ice.de/Beschreibung_Eiswinter2021/Eiswinter2021en.html. Accessed 13 February 2023.

Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld, 2021: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,  673–816. Available at: https://doi.org/10.1017/9781009157896.007

Capuzzo et al. (2017) A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Global change biology.

Capuzzo, E., Stephens, D., Silva, T., Barry, J., & Forster, R. M. (2015). Decrease in water clarity of the southern and central North Sea during the 20th century. Global change biology, 21(6), 2206-2214.

Casabella, N., Lorenzo, M. N., & Taboada, J. J. (2014). Trends of the Galician upwelling in the context of climate change. Journal of sea research, 93, 23-27.

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24–35. Available at: https://doi.org/10.1111/j.1365-2486.2009.01995.x 

Climate Change in the Baltic Sea. 2021 Fact Sheet. Baltic Sea Environment Proceedings No.180. HELCOM/Baltic Earth, 2021.

Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T.J., Bhatt, U.S., Chen, H.W., Coumou, D. and Feldstein, S., 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1),  20-29.

Collins M., M. Sutherland, L. Bouwer, S.-M. Cheong, T. Frölicher, H. Jacot Des Combes, M. Koll Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R.D. Susanto, D. Swingedouw, and L. Tibig, 2019: Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C.  Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska,

K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  589–655. Available at: https://doi.org/10.1017/9781009157964.008

Corte, G.N., Schlacher, T.A., Checon, H.H., Barboza, C.A., Siegle, E., Coleman, R.A. and Amaral, A.C.Z., 2017. Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species. PeerJ, 5, p.e3360.

Costoya, X., Decastro, M., Gómez-Gesteira, M., & Santos, F. (2015). Changes in sea surface temperature seasonality in the Bay of Biscay over the last decades (1982–2014). Journal of Marine Systems, 150, 91-101.

Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F.F., Ríos, A.F., Ferron, B., Huck, T., Thierry, V., Gladyshev, S., 2016. The northern North Atlantic Ocean mean circulation in the early 21st century. Progress in Oceanography 146, 142-158. Available at: https://doi.org/10.1016/j.pocean.2016.06.007

Danovaro, R., Aronson, J., Cimino, R., Gambi, C., Snelgrove, P.V.R. and Van Dover, C. (2021), Marine ecosystem restoration in a changing ocean. Restor Ecol, 29: e13432. Available at: https://doi.org/10.1111/rec.13432

Desbruyères, D.G., Bravo, E.P., Thierry, V., Mercier, H., Lherminier, P., Cabanes, C., Biló, T.C., Fried, N., Femke De Jong, M., 2022. Warming-to-Cooling Reversal of Overflow-Derived Water Masses in the Irminger Sea During 2002–2021. Geophysical Research Letters 49, e2022GL098057. Available at: https://doi.org/10.1029/2022GL098057.

DeVries, T., Holzer, M. & Primeau, F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542, 215–218 (2017). Available at: https://doi.org/10.1038/nature21068

Dukes, J.S. & Mooney, H.A. (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14(4), 135-139.

Dukes, J.S. and Mooney, H.A.  1999.  Does global change increase the success of biological invaders? Trends in ecology & evolution 14(4), 135-139.

Dulvy, N.K., Rogers, S.I., Jennings, S., Stelzenmüller, V., Dye, S.R. and Skjoldal, H.R., 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45(4), pp.1029-1039. Available at: https://doi.org/10.1111/j.1365-2664.2008.01488.x 

Durack, P.J., 2015. Ocean Salinity and the Global Water Cycle. Oceanography 28, 20-31. Available at: https://doi.org/10.5670/oceanog.2015.03.

Durant, J.M., Anker-Nilssen, T., Stenseth, N.C., 2003. Trophic interactions under climate fluctuations: the Atlantic puffin as an example. Proceedings. Biological sciences / The Royal Society 270: 1461–1466. 

Edwards, M., Hélaouët, P., Goberville, E. et al. North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift. Commun Biol 4, 644 (2021). Available at: https://doi.org/10.1038/s42003-021-02159-1

EEA 2014 CLIM045. Available at: https://www.eea.europa.eu/data-and-maps/indicators/storms-and-storm-surges-in-europe-1/assessment-1

European Commission 2021. A new approach for a sustainable blue economy in the EU Transforming the EU's Blue Economy for a Sustainable Future, 21 pp. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0240&from=EN

European Commission, 2020. Sustainable and Smart Mobility Strategy – putting European transport on track for the future, 25 pp.

European Environment Agency, 2016. River Flow: Model-based estimate of past change in annual river flows Projected change in seasonal river flow for 12 rivers (CLIM 016). Available at: https://www.eea.europa.eu/data-and-maps/indicators/river-flow-3 [last accessed 03-Feb-2023]

Evans, P. G., & Bjørge, A. (2013). Impacts of climate change on marine mammals. MCCIP Science Review, 2013, 134-148.

Eyring, V., Gillett, N.P., Achuta Rao, K.M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P.J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., Sun, Y., 2021. Human Influence on the Climate System, in: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,  423–552.

FAO, 2018. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals. Food and Agriculture Organization of the United Nations, Rome, Italy, 210 pp.

Farrell, C.A., Aronson, J., Daily, G.C., Hein, L., Obst, C., Woodworth, P. and Stout, J.C. (2021), Natural capital approaches: shifting the UN Decade on Ecosystem Restoration from aspiration to reality. Restor Ecol e13613. Available at: https://doi.org/10.1111/rec.13613

Faulkner, R.C., Farcas, A., Merchant, N.D. (2018). Guiding principles for assessing the impact of underwater noise. J Appl Ecol. 2018; 55: 2531– 2536. Available at: https://doi.org/10.1111/1365-2664.13161

Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R.B., Aschan, M.M., Dolgov, A. V., 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5 (7), 673–677

Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.S., Edwards, T.L., Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I.S., Ruiz, L., Sallée, J.B., Slangen, A.B.A., Yu, Y., 2021. Ocean, Cryosphere and Sea Level Change, in: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,  1211–1362.

Frazão, H.C., Prien, R.D., Müller, T.J., Schulz-Bull, D.E., Waniek, J.J., 2021. 30 years of temporal variability of temperature and currents below the main thermocline between 1980–2009 in the subtropical Northeast Atlantic (Kiel 276, 33∘N, 22∘W). Journal of Marine Systems 217, 103517. Available at: https://doi.org/10.1016/j.jmarsys.2021.103517.

Frazão, H.C., Waniek, J.J., 2021. Mediterranean Water Properties at the Eastern Limit of the North Atlantic Subtropical Gyre since 1981. Oceans 2, 266-280. Available at: https://doi.org/10.3390/oceans2010016.

Frazao-Santos, C., Agardy, T., Andrade, F., Calado, H., Crowder, L., Ehler, C., García-Morales, S., Gissi, E., Halpern, B., Orbach, M., Pörtner, H. and Rosa, R. 2020. Integrating climate change in ocean planning. Nature Sustainability, 3, p. 505–516. Available at: https://doi. org/10.1038/s41893.-020-0513-x.

Frederiksen, M., S. Wanless, M. P. Harris, P. Rothery, and L. J. Wilson. 2004. The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. Journal of Applied Ecology 41:1129-1139.

Frederiksen, M., P. J. Wright, M. Heubeck, M. P. Harris, R. A. Mavor, and S. Wanless. 2005. Regional patterns of kittiwake Rissa tridactyla breeding success are related to variability in sandeel recruitment. Marine Ecology Progress Series 300:201-211.

Frederiksen, M., Edwards, M., Mavor, R.A., Wanless, S., 2007. Regional and annual variation in black-legged kittiwake breeding productivity is related to sea surface temperature. Marine Ecology Progress Series 350: 137–143.

Frederiksen, M. 2014. Environmental demography: exploring the links between vital rates and a fluctuating environment. DSc. Dissertation, Aarhus University.Hakkinen, H., Petrovan, S.O., Sutherland, W.J., Dias, M.P., Ameca, E.I., Oppel, S., Ramírez, I., Lawson, B., Lehikoinen, A., Bowgen, K.M., Taylor, N.G., Pettorelli, N. 2022. Linking climate change vulnerability research and evidence on conservation action effectiveness to safeguard European seabird populations. Journal of Applied Ecology 59: 1178-1186.

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A. K., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J., in review 2021, Global Carbon Budget 2021, Earth Syst. Sci. Data Discuss. Available at: https://doi.org/10.5194/essd-2021-386

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S., 2020,  Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340. Available at: https://doi.org/10.5194/essd-12-3269-2020.

Fründt, B., Müller, T.J., Schulz-Bull, D.E., Waniek, J.J., 2013. Long-term changes in the thermocline of the subtropical Northeast Atlantic (33°N, 22°W). Progress in Oceanography 116, 246-260. Available at: https://doi.org/10.1016/j.pocean.2013.07.004.

Fu, Y., Li, F., Karstensen, J., Wang, C., 2020. A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s. Science Advances 6, eabc7836. Available at: https://doi.org/10.1126/sciadv.abc7836.

García-Gómez, J.C., Sempere-Valverde, J., González, A.R., Martínez-Chacón, M., Olaya-Ponzone, L., Sánchez-Moyano, E., Ostalé-Valriberas, E. and Megina, C.  2020.  From exotic to invasive in record time: The extreme impact of Rugulopteryx okamurae (Dictyotales, Ochrophyta) in the strait of Gibraltar. Science of the Total Environment 704, 135408.

Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E.B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., Báez, J.C. and Zielinski, T., 2021. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science.

Garrard, S.L. and Tyler-Walters, H. (2020) Habitat (biotope) sensitivity assessments for climate change pressures. Available at: https://www.marlin.ac.uk/assets/pdf/Climate-change-pressures-Feb2020.pdf. Accessed 13-February-2023.

Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M. and Hoegh-Guldberg, O., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243), p.aac4722.

Genner, M.J. et al. (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology 16(2), 517-527.

Gonzalez-Pola, C.; Larsen, K. M. H.; Fratantoni, P.; A. Beszczynska-Möller (2020): ICES Report on Ocean Climate 2019. ICES Cooperative Research Reports (CRR). Report. Available at: https://doi.org/10.17895/ices.pub.7537

Graham, C. T., & Harrod, C. (2009). Implications of climate change for the fishes of the British Isles. Journal of Fish Biology, 74(6), 1143–1205. Available at: https://doi.org/10.1111/j.1095-8649.2009.02180.x 

Hakkinen, H., Petrovan, S.O., Sutherland, W.J., Dias, M.P., Ameca, E.I., Oppel, S., Ramírez, I., Lawson, B., Lehikoinen, A., Bowgen, K.M., Taylor, N.G., Pettorelli, N. 2022. Linking climate change vulnerability research and evidence on conservation action effectiveness to safeguard European seabird populations. Journal of Applied Ecology 59: 1178-1186.

Häkkinen, S., Rhines, P. B., and Worthen, D. L. (2011), Warm and saline events embedded in the meridional circulation of the northern North Atlantic, J. Geophys. Res., 116, C03006. Available at: https://doi.org/10.1029/2010JC006275.

Hansen, B., Húsgarð Larsen, K.M., Hátún, H., Østerhus, S., 2016. A stable Faroe Bank Channel overflow 1995–2015. Ocean Sci. 12, 1205-1220. Available at: https://doi.org/10.5194/os-12-1205-2016.

Harley, C.D., Randall Hughes, A., Hultgren, K.M., Miner, B.G., Sorte, C.J., Thornber, C.S., Rodriguez, L.F., Tomanek, L. and Williams, S.L., 2006. The impacts of climate change in coastal marine systems. Ecology letters, 9(2), pp.228-241.

Harris, V., Edwards, M., & Olhede, S. C. (2014). Multidecadal Atlantic climate variability and its impact on marine pelagic communities. Journal of Marine Systems, 133, 55-69.

Hauck J. et al., 2020, Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Frontiers in Marine Science, 7. Available at: https://doi.org/10.3389/fmars.2020.571720.

Hauck, Judith; Zeising, Moritz; Le Quéré, Corinne; Gruber, Nicolas; Bakker, Dorothee C E; Bopp, Laurent; Chau, Thi Tuyet Trang; Gürses, Özgür; Ilyina, Tatiana; Landschützer, Peter; Lenton, Andrew; Resplandy, Laure; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland (2020): The ocean carbon sink estimate in the Global Carbon Budget 2019. PANGAEA. Available at: https://doi.org/10.1594/PANGAEA.920753.

Hennige, S.J., Wolfram, U., Wickes, L., Murray, F., Roberts, J.M., Kamenos, N.A., Schofield, S., Groetsch, A., Spiesz, E.M., Aubin-Tam, M.E. and Etnoyer, P.J., 2020. Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “Coralporosis” as an indicator of habitat integrity. Frontiers in Marine Science, p.668.

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., ... & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227-238.

Hoegh-Guldberg O., Caldeira K., Chopin T., et al., 2019, The Ocean as a Solution for Climate Change: Five Opportunities for Action. World Resources Institute, Washington, DC., 116 pp. Available at: http://www.oceanpanel.org/climate

Hoegh-Guldberg, O. and Bruno, J.F., 2010. The impact of climate change on the world’s marine ecosystems. Science, 328(5985), pp.1523-1528.

Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  175-312. Available at: https://doi.org/10.1017/9781009157940.005

Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I. (2020). Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1):585.

Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp, L., Butenschon, M., Fach, B.A., Harle, J. and Pushpadas, D., 2016. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Progress in Oceanography, 140, pp.91-115.

Holt, J., Wakelin, S., Lowe, J. and Tinker, J., 2010. The potential impacts of climate change on the hydrography of the northwest European continental shelf. Progress in Oceanography, 86(3-4), pp.361-379.

Holt, J., Wakelin, S., Lowe, J., & Tinker, J. (2010). The potential impacts of climate change on the hydrography of the northwest European continental shelf. Progress in Oceanography, 86(3-4), 361-379.

Horta e Costa, B., Assis, J., Franco, G., Erzini, K., Henriques, M., Gonçalves, E.J., Caselle, J.E., 2014. Tropicalization of fish assemblages in temperate biogeographic transition zones. Mar. Ecol. Prog. Ser. 2014 (504), 241.

Hwang, B., Aksenov, Y., Blockley, E., Tsamados, M., Brown, T., Landy J., Stevens, D. and Wilkinson, J.(2020) Impacts of climate change on Arctic sea ice. MCCIP Science Review 2020, 208–227. Available at: https://doi.org/10.14465/2020.arc10.ice.

ICES (2016) Report of the Working Group on Fish Distribution Shifts (WKFISHDISH), 22–25 November 2016. ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM: 55, 197 pp. 

ICES (2016) Report of the Working Group on Fish Distribution Shifts (WKFISHDISH), 22–25 November 2016. ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM: 55, 197 pp. 

ICES (2018): Interim Report of the ICES/PICES/PAME Working Group for Integrated Ecosystem Assessment of the Central Arctic Ocean (WGICA). ICES Expert Group reports (until 2018). Report. Available at: https://doi.org/10.17895/ices.pub.8269

ICES (2022): Working Group on Integrated Assessments of the Norwegian Sea (WGINOR; outputs from 2021 meeting). ICES Scientific Reports. Report. Available at: https://doi.org/10.17895/ices.pub.19643271.v1

ICES. 2008. The effect of climate change on the distribution and abundance of marine species in the OSPAR Maritime Area . ICES Cooperative Research Report, Vol. 293. 49 pp. Available at: https://doi.org/10.17895/ices.pub.5450

ICES. 2014. Final Report to OSPAR of the Joint OSPAR/ICES Ocean Acidification Study Group (SGOA). ICES CM 2014/ACOM:67. 141 pp. Available at: https://doi.org/10.17895/ices.pub.19282670

ICES. 2021. Working Group on the Integrated Assessments of the Barents Sea (WGIBAR). ICES Scientific Reports. 3:77. 236 pp. Available at: https://doi.org/10.17895/ices.pub.8241

Ikpewe, I.E. et al. (2021) Bigger juveniles and smaller adults: Changes in fish size correlate with warming seas. Journal of Applied Ecology 58(4), 847-856.

IMO 2011. Marine Environment Protection Committee (MEPC) – 62nd session. Available at: https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-62nd-session.aspx. Accessed 13-February-2023

IMO 2018.  MEPC.304(72) on Initial IMO Strategy on reduction of GHG emissions from ships, 27 pp.

IMO 2020. Fourth IMO GHG Study 2020, 524 pp.

IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio E.S., H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (eds.). IPBES secretariat, Bonn, Germany, 56 pp.

IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Available at: http://www.ipcc.ch/report/ar5/syr/.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press. Available at: https://doi.org/10.1017/9781009157896.

IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. (ref)

Johnston, D.T., Humphreys, E.M., Davies, J.G. & Pearce-Higgins, J.W. 2021. Review of climate change mechanisms affecting seabirds within the INTERREG VA area. Report to Agri-Food and Biosciences Institute and Marine Scotland Science as part of the Marine Protected Area Management and Monitoring (MarPAMM) project.

Jørgensen, L. L., Pecuchet, L., Ingvaldsen, R. B., & Primicerio, R. (2022). Benthic transition zones in the Atlantic gateway to a changing Arctic ocean. Progress in Oceanography, 204, 102792.

Josey, S.A., Hirschi, J.J.M., Sinha, B., Duchez, A., Grist, J.P., Marsh, R., 2018. The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena. Annual Review of Marine Science 10, 475-501, doi:  10.1146/annurev-marine-121916-063102.Jung, A.S., van der Veer, H.W., Philippart, C.J.M., Waser, A.M., Ens, B.J., de Jonge, V.N., Schückel, U. (2020) Impacts of macrozoobenthic invasions on a temperate coastal     food web. Marine Ecology Progress Series 653: 19-39.

Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., & Rigor, I. G. (2018). Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 4(1), eaao1302.

Kirezci, E., Young, I.R., Ranasinghe, R. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci Rep 10, 11629 (2020). Available at: https://doi.org/10.1038/s41598-020-67736-6

Krause‐Jensen, D., Duarte, C.M., Sand‐Jensen, K. and Carstensen, J., 2021. Century‐long records reveal shifting challenges to seagrass recovery. Global Change Biology, 27(3), pp.563-575.

Lamb, W.F. et al., 2021, A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018.  Environ. Res. Lett., 16, 073005. Available at: https://doi.org/10.1088/1748-9326/abee4e

Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., Andrews, J., Artioli, Y., Bakker, D.C., Burrows, M.T. and Carr, N., 2020. Carbon on the northwest European shelf: Contemporary budget and future influences. Frontiers in Marine Science, 7, p.143.

Lenoir, S., Beaugrand, G., Lecuyer, ´E., 2011. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob. Change Biol. 17, 115–129.

Li, F., Lozier, M.S., Holliday, N.P., Johns, W.E., Le Bras, I.A., Moat, B.I., Cunningham, S.A., de Jong, M.F., 2021. Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic. Progress in Oceanography 197, 102640. Available at: https://doi.org/10.1016/j.pocean.2021.102640.

Li, G. et al. Increasing ocean stratification over the past half-century. Nat Clim Change 1-8 (2020). Available at: https://doi.org/10.1038/s41558-020-00918-2

Lotze, H.K., Tittensor, D.P., Bryndum-Buchholz, A., Eddy, T.D., Cheung, W.W., Galbraith, E.D., Barange, M., Barrier, N., Bianchi, D., Blanchard, J.L. and Bopp, L., 2019. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences, 116(26), pp.12907-12912.

Lowe, J.A., Howard, T., Pardaens, A., Tinker, J., Holt, J., Wakelin, S., Milne, G., Leake, J., Wolf, J., Horsburgh, K., et al. (2009). UK Climate Projections science report: Marine and coastal projections. Met Office Hadley Centre, Exeter, UK. ISBN 978-1-906360-03-0

Lozier, M.S., Li, F., Bacon, S., Bahr, F., Bower, A.S., Cunningham, S.A., de Jong, M.F., de Steur, L., deYoung, B., Fischer, J., Gary, S.F., Greenan, B.J.W., Holliday, N.P., Houk, A., Houpert, L., Inall, M.E., Johns, W.E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I.A., Lin, X., Mackay, N., Marshall, D.P., Mercier, H., Oltmanns, M., Pickart, R.S., Ramsey, A.L., Rayner, D., Straneo, F., Thierry, V., Torres, D.J., Williams, R.G., Wilson, C., Yang, J., Yashayaev, I., Zhao, J., 2019. A sea change in our view of overturning in the subpolar North Atlantic. Science 363, 516-521. Available at: https://doi.org/10.1126/science.aau6592

Lyashevska, O., Harma, C., Minto, C., Clarke, M., & Brophy, D. (2020). Long-term trends in herring growth primarily linked to temperature by gradient boosting regression trees. Ecological Informatics, 60, 101154. Available at: https://doi.org/10.1016/j.ecoinf.2020.101154 

Macovei, Vlad A., Susan E. Hartman, Ute Schuster, Sinhué Torres-Valdés, C. Mark Moore, Richard J. Sanders. (2020) Corrigendum to "Impact of physical and biological processes on temporal variations of the ocean carbon sink in the mid-latitude North Atlantic (2002-2016)" [Progr. Oceanogr. 180 (2020) 102223]. Progress in Oceanography, 186: 102390

Malone, T. C., & Newton, A. (2020). The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Frontiers in Marine Science, 670.

Maulu S, Hasimuna OJ, Haambiya LH, Monde C, Musuka CG, Makorwa TH, Munganga BP, Phiri KJ and Nsekanabo JD (2021) Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 5:609097. Available at: https://doi.org/10.3389/fsufs.2021.609097

Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre,T. Sapkota, F.N. Tubiello, Y. Xu, 2019: Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)].

McGregor, H. V., Dima, M., Fischer, H. W., & Mulitza, S. (2007). Rapid 20th-century increase in coastal upwelling off northwest Africa. science, 315(5812), 637-639.

Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. and Silliman, B.R. (2011), A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9: 552-560. Available at: https://doi.org/10.1890/110004

Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N., Desbruyères, D., Falina, A., Ferron, B., Gourcuff, C., Huck, T., Thierry, V., 2015. Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Progress in Oceanography 132, 250-261. Available at: https://doi.org/10.1016/j.pocean.2013.11.001

Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, J. Melbourne-Thomas, M.M.C. Muelbert, G. Ottersen, H. Pritchard, and E.A.G. Schuur, 2019: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V.  Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  203–320. Available at: https://doi.org/10.1017/9781009157964.005

Mette, M.J., Wanamaker Jr, A.D., Retelle, M.J., Carroll, M.L., Andersson, C., Ambrose Jr, W.G., 2021. Persistent Multidecadal Variability Since the 15th Century in the Southern Barents Sea Derived From Annually Resolved Shell-Based Records. Journal of Geophysical Research: Oceans 126, e2020JC017074. Available at: https://doi.org/10.1029/2020JC017074

Mitchell, I., Daunt, F., Frederiksen, M. & Wade, K. 2020. Impacts of climate change on seabirds, relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020 382–399.

Moat, B.I., Smeed, D.A., Frajka-Williams, E., Desbruyères, D.G., Beaulieu, C., Johns, W.E., Rayner, D., Sanchez-Franks, A., Baringer, M.O., Volkov, D., Jackson, L.C., Bryden, H.L., 2020. Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Sci. 16, 863-874. Available at: https://doi.org/10.5194/os-16-863-2020

Montanarella, L., Scholes, R. and Brainich, A., 2018. The IPBES assessment report on land degradation and restoration. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany.

Morison, F., Harvey, E., Franzè, G. and Menden-Deuer, S., 2019. Storm-induced predator-prey decoupling promotes springtime accumulation of North Atlantic phytoplankton. Frontiers in Marine Science, 6, 608.
Nagelkerken, I. and Connell, S.D., 2015. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences, 112(43), pp.13272-13277.

New, M., D. Reckien, D. Viner, C. Adler, S.-M. Cheong, C. Conde, A. Constable, E. Coughlan de Perez, A. Lammel, R. Mechler, B. Orlove, and W. Solecki, 2022: Decision-Making Options for Managing Risk. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  2539–2654, Available at: https://doi.org/10.1017/9781009325844.026

Occhipinti-Ambrogi, A. (2021) Biopollution by invasive marine non-indigenous species: a review of potential adverse ecological effects in a changing climate. International Journal of Environmental Research and Public Health 18(8), 4268.

Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Danielsen, M., Arnarson, T.S., and Takahashi, T., 2009. Rate of Iceland Sea acidification from time series measurements. Biogeosciences, 6, 2661–2668. Available at: www.biogeosciences.net/6/2661/2009/.

Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA,  321–445, Available at: https://doi.org/10.1017/9781009157964.006.

OSPAR (2018) 2018 Status Report on the OSPAR Network of Marine Protected Areas. Available at: https://oap.ospar.org/en/ospar-assessments/committee-assessments/biodiversity-committee/status-ospar-network-marine-protected-areas/assessment-reports-mpa/2018/. Accessed 14 February 2023

OSPAR, 2021. Medium-level and detailed-level review of progress in the North-East Atlantic Environment Strategy 2010 2020. Available at: https://www.ospar.org/documents?v=47512.

Österblom, H., Casini, M., Olsson, O., Bignert, A., 2006. Fish, seabirds and trophic cascades in the Baltic Sea. Marine Ecology Progress Series 323, 233–238.

Ottersen, G. (2000). Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: The environmental link. ICES Journal of Marine Science, 57(2), 339–348. Available at: https://doi.org/10.1006/jmsc.1999.0529 

Painting, S., Foden, J., Forster, R., van der Molen, J., Aldridge, J., Best, M., Jonas, P., Hydes, D., Walsham, P., Webster, L. and Gubbins, M., 2013. Impacts of climate change on nutrient enrichment. Marine Climate Change Impacts Partnership Science Review, Lowestoft, UK, pp.219-235.

Pardo, P. C., Padín, X. A., Gilcoto, M., Farina-Busto, L., & Pérez, F. F. (2011). Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Climate Research, 48(2-3), 231-246.

Pearce-Higgins, J.W., Davies, J.G. & Humphreys, E.M. 2021. Species and habitat climate change adaptation options for seabirds within the INTERREG VA area. Report to Agri-Food and Biosciences Institute and Marine Scotland Science as part of the Marine Protected Area Management and Monitoring (MarPAMM) project.

Pérez, F. F., Padín, X. A., Pazos, Y., Gilcoto, M., Cabanas, M., Pardo, P. C., ... & FARINA‐BUSTO, L. U. I. S. (2010). Plankton response to weakening of the Iberian coastal upwelling. Global Change Biology, 16(4), 1258-1267.

Perez, F.F., Fontela, M., García-Ibáñez, M.I., Mercier, H., Velo, A., Lherminier, P., Zunino, P., de la Paz, M., Alonso-Pérez, F., Guallart, E.F., Padin, X.A., 2018. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature 554, 515-520. Available at: https://doi.org/10.1038/nature25493.

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341(6151), 1239-1242.

Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T. and Duarte, C.M., 2013. Global imprint of climate change on marine life. Nature Climate Change, 3(10), pp.919-925.

Poloczanska, E.S., Burrows, M.T., Brown, C.J., García Molinos, J., Halpern, B.S., Hoegh-Guldberg, O., Kappel, C.V., Moore, P.J., Richardson, A.J., Schoeman, D.S. and Sydeman, W.J., 2016. Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, p.62.

Poloczanska, E.S., et al., (2013), Global imprint of climate change on marine life. Nature Climate Change

Poloczanska, E.S., et al., (2016), Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, 62.

Pörtner, H.O., Karl, D.M., Boyd, P.W., Cheung, W., Lluch-Cota, S.E., Nojiri, Y., Schmidt, D.N., Zavialov, P.O., Alheit, J., Aristegui, J. and Armstrong, C., 2014. Ocean systems. In Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 411-484). Cambridge University Press.

Punzón, A., Serrano, A., Sánchez, F., Velasco, F., Preciado, I., González-Irusta, J., López-López, L., 2016. Response of a temperate demersal fish community to global warming. J. Mar. Syst. 161, 1–10.
Queirós, A.M., Talbot, E.,  Beaumont, N.J., Somerfield, P.J., Kay, S., Pascoe, C., Dedman, S., Fernandes, J.A., Jueterbock, A., Miller, P.I., Sailley, S.F., Sará, G., Carr, L.M., Austen, M.C., Widdicombe, S., Rilov, G., Levin, L.A., Hull, S.C., Walmsley, S.F., Nic Aonghusa, C. 2021 . Bright spots as climate-smart marine spatial planning tools for conservation and blue growth. Global Change Biology. 27(21): 5514-5531.
Rayner, N. A.; Parker, D. E.; Horton, E. B.; Folland, C. K.; Alexander, L. V.; Rowell, D. P.; Kent, E. C.; Kaplan, A. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century J. Geophys. Res.Vol. 108, No. D14, 4407. Available at: https://doi.org/10.1029/2002JD002670 

Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P. J., ... & Genner, M. J. (2015). Future fish distributions constrained by depth in warming seas. Nature Climate Change, 5(6), 569-573. 

Sallée, J.-B. et al., Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592-598 (2021).

Santos, C. F., T. Agardy, F. Andrade, H. Calado, L. B. Crowder, C. N. Ehler, S. García-Morales, E. Gissi, B. S. Halpern and M. K. Orbach 664 (2020). "Integrating climate change in ocean planning." Nature Sustainability: 1-12.

Santos, F., DeCastro, M., Gómez-Gesteira, M., & Álvarez, I. (2012). Differences in coastal and oceanic SST warming rates along the Canary upwelling ecosystem from 1982 to 2010. Continental Shelf Research, 47, 1-6.

Saunders, M.I., Doropoulos, C., Bayraktarov, E., Babcock, R.C., Gorman, D., Eger, A.M., Vozzo, M.L., Gillies, C.L., Vanderklift, M.A., Steven, A.D. and Bustamante, R.H., 2020. Bright spots in coastal marine ecosystem restoration. Current Biology, 30(24), pp.R1500-R1510.

Schäfer, S., Monteiro, J., Castro, N., Rilov, G., Canning-Clode, J., 2019. Cronius ruber (Lamarck, 1818) arrives to Madeira Island: a new indication of the ongoing tropicalization of the northeastern Atlantic. Marine Biodiversity 49, 2699-2707. Available at: https://doi.org/10.1007/s12526-019-00999-z.

Schrum, Corinna, Jason Lowe, HE Markus Meier, Iris Grabemann, Jason Holt, Moritz Mathis, Thomas Pohlmann, Morten D. Skogen, Andreas Sterl, and Sarah Wakelin. "Projected change—North sea." North Sea region climate change assessment (2016): 175-217.

SCOS (Special Committee on Seals) (2018) Scientific Advice on Matters Related to the Management of Seal Populations: 2018. UK SCOS Annual Report, Sea Mammal Research Unit, University of St Andrews, 155 pp.

Screen, J.A. (2021), An ice-free Arctic: what could it mean for European weather? Weather, 76: 327-328. Available at: https://doi.org/10.1002/wea.4069.

Sharples, J., Holt, J. and Dye, S.R. (2013) Impacts of climate change on shelf sea stratification, MCCIP Science Review 2013, 67-70. Available at: https://doi.org/10.14465/2013.arc08.067-070

Sharples, J., Holt, J. and Wakelin, S. (2020) Impacts of climate change on shelf-sea stratification relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020, 103–115. Available at: https://doi.org/10.14465/2020.arc05.str.

Siemer, J.P., Machín, F., González-Vega, A., Arrieta, J.M., Gutiérrez-Guerra, M.A., Pérez-Hernández, M.D., Vélez-Belchí, P., Hernández-Guerra, A., Fraile-Nuez, E., 2021. Recent Trends in SST, Chl-a, Productivity and Wind Stress in Upwelling and Open Ocean Areas in the Upper Eastern North Atlantic Subtropical Gyre. Journal of Geophysical Research: Oceans 126, e2021JC017268. Available at: https://doi.org/10.1029/2021JC017268.

Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.-J., Sims, D.W., Genner, M.J., 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21, 1565–1570

Skagseth, Ø., Broms, C., Gundersen, K., Hátún, H., Kristiansen, I., Larsen, K.M.H., Mork, K.A., Petursdottir, H., Søiland, H., 2022. Arctic and Atlantic Waters in the Norwegian Basin, Between Year Variability and Potential Ecosystem Implications. Frontiers in Marine Science 9. Available at: https://doi.org/10.3389/fmars.2022.831739.

Skjelvan, I., Falck, E., Rey, F., and Kringstad, S., 2008, Inorganic carbon time series at Ocean Weather Station M in the Norwegian Sea, Biogeosciences, 5, 549-560. Available at: https://doi.org/10.5194/bg-5-549-2008

Skjelvan, I., Lauvset, S.K., Johannessen, T., Gundersen, K., and Skagseth, Ø., 2021, Decadal trends in Ocean Acidification from the Ocean Weather Station M in the Norwegian Sea. Submitted to Journal of Marine Systems.

Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., et al. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527– 1533, Available at: https://doi.org/10.1002/2017GL076350

Smeed, D.A., Josey, S.A., Beaulieu, C., Johns, W.E., Moat, B.I., Frajka-Williams, E., Rayner, D., Meinen, C.S., Baringer, M.O., Bryden, H.L., McCarthy, G.D., 2018. The North Atlantic Ocean Is in a State of Reduced Overturning. Geophysical Research Letters 45, 1527-1533. Available at: https://doi.org/10.1002/2017GL076350.

Somavilla, González-Pola & Fernández-Diaz. The warmer the ocean surface, the shallower the mixed layer. How much of this is true? Journal of Geophysical Research: Oceans 122, 7698-7716 (2017).

Sorte, C. J., Williams, S. L., & Carlton, J. T. (2010). Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography, 19(3), 303-316.

Speybroeck, J., Bonte, D., Courtens, W., Gheskiere, T., Grootaert, P., Maelfait, J.P., Mathys, M., Provoost, S., Sabbe, K., Stienen, E.W. and Lancker, V.V., 2006. Beach nourishment: an ecologically sound coastal defence alternative? A review. Aquatic conservation: Marine and Freshwater ecosystems, 16(4), pp.419-435.

Staehr, P.A., Jakobsen, H.H., Hansen, J.L., Andersen, P., Christensen, J., Göke, C., Thomsen, M.S. and Stebbing, P.D., 2020. Trends in records and contribution of non-indigenous and cryptogenic species to marine communities in Danish waters: potential indicators for assessing impact. Aquatic Invasions, 15(2).

Stewart-Sinclair, P. J., Purandare, J., Bayraktarov, E., Waltham, N., Reeves, S., Statton, J., ... & Lovelock, C. E. (2020). Blue restoration–building confidence and overcoming barriers. Frontiers in Marine Science, 748.

Sweetman, A.K., Thurber, A.R., Smith, C.R., Levin, L.A., Mora, C., Wei, C.L., Gooday, A.J., Jones, D.O., Rex, M., Yasuhara, M. and Ingels, J., 2017. Major impacts of climate change on deep-sea benthic ecosystems. Elementa: Science of the Anthropocene, 5.

Thorpe et al. (2022) The response of North Sea ecosystem functional groups to warming and changes in fishing. Frontiers in Marine Science.

Townhill, B. et al. (2017) Non-native species in north-west Europe: developing an approach to assess future spread using regional downscaled climate projections. Aquatic Conservation: Marine and Freshwater Ecosystems.

Tsiamis, K. et al. (2019) Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union’s Marine Strategy Framework Directive. Marine Pollution Bulletin 145, 429-435.

UN Environment (2018). The Contributions of Marine and Coastal Area-Based Management Approaches to Sustainable Development Goals and Targets. UN Regional Seas Reports and Studies No. 205. Available at: https://resources.unep-wcmc.org/products/WCMC_RT406

United Nations Framework Convention on Climate Change, 9 May , 1992, S. Treaty Doc No. 102-38, 1771 U.N.T.S. 107.
Valente, A., Sousa, F., Dias, J., 2019. Decadal changes in temperature and salinity of Central Waters off Western Iberia. Deep Sea Research Part I: Oceanographic Research Papers 151, 103068. Available at: https://doi.org/10.1016/j.dsr.2019.103068.

Vergés, A., Steinberg, P.D., Hay, M.E., Poore, A.G.B., Campbell, A.H., Ballesteros, E., Heck, K.L., Booth, D.J., Coleman, M.A., Feary, D.A., Figueira, W., Langlois, T., Marzinelli, E.M., Mizerek, T., Mumby, P.J., Nakamura, Y., Roughan, M., van Sebille, E., Gupta, A.S., Smale, D.A., Tomas, F., Wernberg, T., Wilson, S.K., 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences 281, 20140846. Available at: https://doi.org/10.1098/rspb.2014.0846.

Víkingsson, G.A., Pike, D.G., Valdimarsson, H., Schleimer, A., Gunnlaugsson, T., Silva, T., Elvarsson, B., Mikkelsen, B., Oien, N., Desportes, G., Bogason, V., Hammond, P.S., 2015. Distribution, abundance, and feeding ecology of baleen whales in Icelandic waters: have recent environmental changes had an effect? Front. Ecol. Evol. 3, 1–18. Available at: https://doi.org/10.3389/fevo.2015.00006.

von Schuckmann, K., 2020, Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data, 12, 2013–2041. Available at: https://doi.org/10.5194/essd-12-2013-2020

Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M. and Feyen, L. (2017), Extreme sea levels on the rise along Europe's coasts. Earth's Future, 5: 304-323. Available at: https://doi.org/10.1002/2016EF000505

Wakelin, S. L., Artioli, Y., Holt, J. T., Butenschön, M., & Blackford, J. (2020). Controls on near-bed oxygen concentration on the Northwest European Continental Shelf under a potential future climate scenario. Progress in Oceanography, 187, 102400.

Wakelin, S., Townhill, B., Engelhard, G., Holt, J., Renshaw, R. (2021) Marine heatwaves and cold-spells, and their impact on fisheries in the North Sea in Copernicus Marine Service Ocean State Report (ed von Schuckmann et al.), Journal of Operational Oceanography, 14:sup1, 1-185. Available at: https://doi.org/10.1080/1755876X.2021.1946240

Watson, A.J., Schuster, U., Shutler, J.D., Holding, T., Ashton, I.G., Landschützer, P., Woolf, D.K. and Goddijn-Murphy, L., 2020. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nature communications, 11(1), p.4422.

Weinert, M., Mathis, M., Kröncke, I., Pohlmann, T. and Reiss, H., 2021. Climate change effects on marine protected areas: Projected decline of benthic species in the North Sea. Marine Environmental Research, 163, p.105230.

Williamson, M.J., ten Doeschate, M.T., Deaville, R., Brownlow, A.C. and Taylor, N.L., 2021. Cetaceans as sentinels for informing climate change policy in UK waters. Marine Policy, 131, p.104634.

Wolf, J., Woolf, D. and Bricheno, L. (2020) Impacts of climate change on storms and waves relevant to the coastal and marine environment around the UK. MCCIP Science Review, 2020, 132–157.

Worthington, E.L., Moat, B.I., Smeed, D.A., Mecking, J.V., Marsh, R., McCarthy, G.D., 2021. A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline. Ocean Sci. 17, 285-299. Available at: https://doi.org/10.5194/os-17-285-2021

Yamaguchi, R. & Suga, T. Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans 124, 8933-8948 (2019).

Zicos, M., Thompson, D., and Boehme, L. (2018) Potential Future Global Distributions of Grey and Harbour Seals under different climate change scenarios. In SCOS Scientific Advice on Matters Related to the Management of Seal Populations: 2017, UK SCOS Annual Report, Sea Mammal Research Unit, University of St Andrews, pp. 128–134.

Climate Change Assessments


Contributors

Lead authors: Barbara Berx and Stephen Dye

Supporting authors: Catia Bartilotti, Julien Favier, Helgi Jensson, Manuela Krakau, Youna Lyons, Claudia Morys, Susana Lincoln, Sorcha Ni Longphuirt, Glenn Nolan, Karl Norling, Cesar Pola, Patrick Roose, Bettina Taylor and Antje Voelker

Supported by: OSPAR Commission Secretariat, all Thematic Assessment leads and their respective Committees (Biodiversity Committee (BDC), Environmental Impacts of Human Activities Committee (EIHA), Hazardous Substances and Eutrophication Committee (HASEC), Offshore Industry Committee (OIC) and Radioactive Substances Committee (RSC)), Intersessional Correspondence Group on Ecosystem Assessment Outlook (ICG-EcoC), Intersessional Correspondence Group on Economic and Social Analysis (ICG-ESA), Intersessional Correspondence Group on the Quality Status Report (ICG-QSR)

Citation

OSPAR, 2023. Climate Change Thematic Assessment. In: OSPAR, 2023: Quality Status Report 2023. OSPAR Commission, London. Available at: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/thematic-assessments/climate-change/

Printable PDF